Tetrahedral Curves via Graphs and Alexander Duality

نویسنده

  • CHRISTOPHER A. FRANCISCO
چکیده

A tetrahedral curve is a (usually nonreduced) curve in P defined by an unmixed, height two ideal generated by monomials. We characterize when these curves are arithmetically Cohen-Macaulay by associating a graph to each curve and, using results from combinatorial commutative algebra and Alexander duality, relating the structure of the complementary graph to the Cohen-Macaulay property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac's theorem on chordal graphs and Alexander duality

By using Alexander duality on simplicial complexes we give a new and algebraic proof of Dirac’s theorem on chordal graphs.

متن کامل

Diagonal walks on plane graphs and local duality

We introduce the notion of local duality for planarmaps, i.e., for graphs embedded in the plane. Local duality is the transitive closure of the relation that transforms a graph that is the union of two connected subgraphs sharing a vertex by dualizing one of the two subgraphs. We prove that two planar maps have the same diagonal walks iff one of them can be transformed into the other by applyin...

متن کامل

Perfect $2$-colorings of the Platonic graphs

In this paper, we enumerate the parameter matrices of all perfect $2$-colorings of the Platonic graphs consisting of the tetrahedral graph, the cubical graph, the octahedral graph, the dodecahedral graph, and  the icosahedral graph.

متن کامل

A Polynomial Invariant and Duality for Triangulations

The Tutte polynomial TG(X,Y ) of a graph G is a classical invariant, important in combinatorics and statistical mechanics. An essential feature of the Tutte polynomial is the duality for planar graphs G, TG(X,Y ) = TG∗(Y,X) where G ∗ denotes the dual graph. We examine this property from the perspective of manifold topology, formulating polynomial invariants for higher-dimensional simplicial com...

متن کامل

A ug 2 01 4 A POLYNOMIAL INVARIANT AND DUALITY FOR TRIANGULATIONS

The Tutte polynomial TG(X,Y ) of a graph G is a classical invariant, important in combinatorics and statistical mechanics. An essential feature of the Tutte polynomial is the duality for planar graphs G , TG(X,Y ) = TG∗(Y,X) where G∗ denotes the dual graph. We examine this property from the perspective of manifold topology, formulating polynomial invariants for higher-dimensional simplicial com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008